Modeling Tree Sap Flow Using PDEs

Justin Beutel - Bryn Pittinger - Brandon Wong
Introduction

- Determine whether using thermistors to measure the flow of tree sap is a potential alternative to current methods
- Model the thermistor as a point source of an instantaneous burst of heat
Notations
Problem Definition

• Determine the flow of tree sap using the Marshall Model and a known (measured) change in temperature

• The Marshall Model
 – Convection: \(\frac{dT}{dt} = u \frac{dT}{dx} \)
 – Conduction: \(\frac{dT}{dt} = \alpha \left(\frac{d^2T}{dx^2} + \frac{d^2T}{dy^2} \right) \)
 – Heat Pulse: \(Q \delta(x)\delta(y)\delta(t) \)
Notations

• u : tree sap velocity [cm/hr]
• Q : heat source term [$^\circ\text{C} \cdot \text{cm}^2$]
• W : change in temperature [$^\circ\text{C}$]
• x-y plane : surface of trunk where x is parallel to the trunk
• t : time [s]
• α : thermal diffusivity of xylem [m2/s]
Problem Solution Method

- Validate Marshall Model
 - Laplace Transform
 - Fourier Transform
 - Jump Condition
 - Solution
 - Inverse Laplace Transform
 - Branch Cut in the Complex Plane
 - Inverse Fourier Transform

\[u = \frac{x}{t} - \frac{1}{t} \sqrt{-4\alpha t \ln \left(\frac{4W\pi\alpha t}{Q} \right)} - y^2 \]
Results and Simulations
Results and Simulations
Future Steps

• Collect data from laboratory design and compare with Marshall Model
• Implement prototype in field tests