Numerical Schemes from the Perspective of Consensus
Exploring Connections between Agreement Problems and PDEs

Yusef Shafi

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
April 27, 2010
Characterizing Numerical Schemes through Consensus

- Given a general PDE, how can we analyze it from the p.o.v. of Linear Systems Theory?
- Particularly interested in parabolic and elliptic PDEs that involve the Laplace operator
 - \(Au_{xx} + Bu_{xy} + Cu_{yy} + \ldots = 0 \), where \(B^2 - 4AC \leq 0 \)
 - For example, heat equation: \(u_t = au_{xx} \)
- Why the Laplace operator?
 - Rich theory of graphs utilizing discrete Laplace matrix
 - Concise framework through which to understand many problems in discrete distributed control
- **Question:** which classes of PDE control problems can be studied as consensus problems and how can this framework help us?
Outline of this talk

- General overview of the objectives of the project
- Mathematical Preliminaries
- Two Motivating Problems
 - Consensus on Networks
 - Control of Spatially Varying Interconnected Systems
- Illustrative example studying a PDE system as a consensus problem
- Broader discussion of the framework and potential future directions
Outline

1. Preliminaries
2. Two Motivating Problems
3. Illustrative Example: Heat Equation
4. Generalizations
5. Going Forward
Numerical Analysis well-understood, lends itself to solution of “real” ODE/PDE systems

Simplest example: First-order Euler explicit forward difference (from Taylor series)

\[\dot{u} = f(t, u) \]
\[u_{t+h} = u_t + h(t, u_t) \]
How Robust is the Scheme?

- Stability: Backward or implicit difference schemes stable for any h
 - Stiff Systems[1]
- Accuracy vs. efficiency: take into account more terms, tighter granularity in step size
- Choice may depend on operating constraints, e.g., online or offline
Numerical Schemes as Linear Systems

For systems, linear discretization results in an LTI system:

\[\dot{u} = Su + Q, \quad u, Q \in \mathbb{R}^n, \quad S \in \mathbb{R}^{n \times n} \]

Standard linear systems tests apply for stability.

- See if S is Hurwitz, etc.
Some Working Definitions for Graphs

Definition
A **vertex** v is a point in n dimensional space.

Definition
An **edge** is an ordered pair (v_1, v_2) where v_i are vertices connected by a segment.

Definition
A **graph** $G = G(V, E)$ is a collection of vertices V connected by the set of edges E.
Graph Models[3]

Cycle

Randomly Generated Graph
The Graph Laplacian

Definition

The **degree** of a vertex is the number of edges of which it is a member.

Definition

A graph **Laplacian** is a square matrix defined as follows[2]:

\[
[L]_{ij} = \begin{cases}
 d_i & : i = j \\
 -1 & : \exists e_{ij} = (v_i, v_j) \in E \\
 0 & : \text{otherwise}
\end{cases}
\] \hspace{1cm} (1)
Preliminaries
Two Motivating Problems
Illustrative Example: Heat Equation
Generalizations
Going Forward

Laplacian Spectral Analysis

- Laplacian is symmetric positive semidefinite
- At least one eigenvalue at zero, with corresponding eigenvector $[1 \ldots 1]^T$
- Spectrum of Laplacian describes network dynamics
 - Fiedler eigenvalue[1]: smallest positive eigenvalue a measure of connectedness
The Agreement Problem

- Given a collection of agents that can communicate
- Characterize conditions required for agreement on a parameter
- Describe convergence properties, e.g., asymptotic, exponential, ...
Consensus Problem on Networks

- Given a collection of nodes, model their interaction by

\[
\dot{x} = -Lx, \text{ continuous case}
\]
\[
x(k+1) = (I - \epsilon L)x(k), \text{ discrete case}
\]

Theorem

For a continuous-time system, global exponential consensus is reached with speed at least as fast as \(\lambda_2(L) \). For a discrete-time system, global exponential consensus is reached with speed at least as fast as \(1 - \epsilon \lambda_2(L) \), provided that \(\epsilon < \frac{1}{d_{\text{max}}} \), where \(d_{\text{max}} \) is the maximum degree of any vertex of \(L \).
Fascinating emergent behavior: group of nodes behaves like a continuum reaching a steady-state value

Applications[3]
- Formation control
- Coupled oscillators
- Flocking
- Small world networks
- Distributed sensor fusion
Control of Spatially Varying Systems[3]

- Spatially varying system
- Defines necessary and sufficient LMI conditions for stabilization
- Example application: discretization of the heat equation in two dimensions
- Our goal: understand discretization from the perspective of consensus
Control of Spatially Varying Systems[3]

- Spatially varying system
- Defines necessary and sufficient LMI conditions for stabilization
- Example application: discretization of the heat equation in two dimensions
- Our goal: understand discretization from the perspective of consensus
Control of Spatially Varying Systems[4], II

Finite linear connection

Finite planar connection\(^1\)

\(^{1}\text{D’Andrea, Langbort, and Chandra, 2003.}\)
Outline

1. Preliminaries
2. Two Motivating Problems
3. Illustrative Example: Heat Equation
4. Generalizations
5. Going Forward
Heat Equation on the Unit Circle

- Heat equation on the circle [4] parametrized by \(x \in [0, 1) \) with \(\theta = 2\pi x \): \(u_t = au_{xx} \)
- Separation of variables readily yields:
 \[
 u(x, t) = (T_0 * H_t)(x) = \sum_{n=-\infty}^{\infty} a_n e^{-4\pi^2 n^2 t} e^{2\pi jnx}
 \]
- \(H_t(x) \) is the heat kernel for the unit circle and \(a_n \) are the Fourier coefficients of \(T_0 \)
- Eigenvalues given by \(4\pi^2 n^2 \)
Spatial Representation[3]

Circle\(^2\) (1D Periodic BC)

\(^2\)D’Andrea and Dullerud, 2003.
Three point stencil

- 1D Laplacian: second-order centered difference scheme.

\[(u_t)_i = \frac{a}{\Delta x^2}(u_{i+1} - 2u_i + u_{i-1})\]

- Resulting space discretization: first order linear ODE
- Same dynamics as the consensus problem!
Laplacian Graph Structure and Interpretation

To impose periodic boundary conditions[2], note that \(u_0 = u_N \). The system representations are

\[
-L = \frac{a}{\Delta x^2}
\begin{pmatrix}
-2 & 1 & 0 & \ldots & 0 & 1 \\
1 & -2 & 1 & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & 0 & \ddots & \ddots & \ddots & 0 \\
0 & \vdots & \ddots & 1 & -2 & 1 \\
1 & 0 & \ldots & 0 & 1 & -2
\end{pmatrix}
\]

\[
\dot{u} = -Lu \\
u(k+1) = (I - \epsilon L)u(k).
\]
Using discrete Fourier transform, with the eigenfunctions $f(j)(x) = e^{lk_j i \Delta x}$, we get

$$\lambda(\phi_m) = \frac{2a}{\Delta x^2} (\cos \phi_m - 1),$$

with $\phi_m = lk_m \Delta x = \frac{2m\pi}{N}$, $m = 0, \ldots N - 1$. So the eigenvalues range in value from $-\frac{4a}{\Delta x^2}$ to zero. Let $a = 1$ and $\Delta x = \frac{1}{N}$. Then:

$$\lambda(L) = \frac{2}{\Delta x^2} \left(1 - \cos \frac{2m\pi}{N} \right) \approx 4m^2 \pi^2.$$
Spectral Analysis, II

- Eigenvalues of discretization converge to eigenvalues of continuous operator.
- $\lambda_2(L) \approx 4\pi^2$
- Space-discretized ODE will reach globally exponential consensus value with a speed at least as great as $4\pi^2$.
- Standard ODE time integration methods chosen based on location of eigenvalues
- Key idea: The original PDE system, discretized, is exactly the consensus problem for a cycle topology.
Spectral Analysis, II

- Eigenvalues of discretization converge to eigenvalues of continuous operator.
- \(\lambda_2(L) \approx 4\pi^2 \)
- Space-discretized ODE will reach globally exponential consensus value with a speed at least as great as \(4\pi^2 \).
- Standard ODE time integration methods chosen based on location of eigenvalues
- **Key idea:** The original PDE system, discretized, is exactly the consensus problem for a cycle topology.
Outline

1 Preliminaries
2 Two Motivating Problems
3 Illustrative Example: Heat Equation
4 Generalizations
5 Going Forward
Different Schemes

- Use different discretizations
- 5, 7, 9 point stencils
 - Algebraic connectivity improves
 - Computational cost increases
 - For a large grid, stencil size will be less important
- Modified 3 point stencil: look two steps behind and ahead
 - Doesn’t have much effect on connectivity
Extensions to higher dimensions

- Same idea applicable to higher spatial order Laplacian terms
 \[u_t = a \Delta u \]
- Apply higher order spatial discretizations
- 2D case: typical choice 5 or 9 point scheme
 \[(u_t)_{i,j} = \frac{a}{\Delta x^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}) \]
Visual Representation[3]

Torus3 (2D Periodic BC)

Stencil Grids

One spatial dimension Two spatial dimensions
Classes of Systems Amenable to Consensus Graph Analysis

- Periodic Boundary Conditions
- Neumann Boundary Conditions
 - Can control through the boundaries
- Control terms can also be applied at each actuator: turns out that if there are at least two independent inputs (outputs), LTI system is controllable (observable).
- General LTI form:
 \[
 \dot{u} = -Lu + Gr
 \]
Outline

1 Preliminaries
2 Two Motivating Problems
3 Illustrative Example: Heat Equation
4 Generalizations
5 Going Forward
Horizons

- Other Boundary Conditions: cannot be directly represented as graph Laplacian
 - Potential future work in this direction: how can these systems be understood as consensus problems?
 - Can use linear state feedback to get to Laplacian form, but may not be realistic
- Designing better interconnection structures through graph theory
 - Boyd et al.: Convex optimization to design fastest mixing Markov chains, minimize resistance in a network, etc.
Summary

- Many second-order PDEs can be analyzed in a consensus framework
- Consensus a useful paradigm for distributed control
- Example: Heat Equation
- Laplacian graph theory and consensus:
 - Facilitate better numerical schemes
 - Aid in understanding complex continuum dynamics
Additional Reading

Additional Reading, II

Questions

Thank You

Any Questions?